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1 Terminology

Definition 1.1 Matrix

A matrix is a rectangular array of numbers arranged in rows (n) and columns (K):

An,K =



a11 a12 · · · a1K

a21 a22 · · · a2K
...

...
. . .

...

an1 an2 · · · anK


An element ai,k ∈ A represents the element positioned in row i and column k.

Definition 1.2 Vector

A vector is an ordered set of numbers arranged in either a single row or a single column.

A row vector (r) is a vector with just one row:

r1,K =

[
a11 a12 · · · a1K

]

A column vector (c) is a vector with just one column.

cn,1 =



a11

a21
...

an1



A matrix can be viewed as a set of vectors. The dimension of a matrix is the number of rows

(n) and columns (K) it contains. Hence, a matrix A with n rows and K columns has a dimension

of n×K.

Definition 1.3 Scalar

A scalar is a single number, scalars are simultaneously column and row vectors.

The main diagonal of a matrix is the set of elements ai,k of a matrix such that i = k. With

this brief terminology we can define the following:

• Square matrix: A matrix with the same number of rows and columns.
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Example 1.1 Square matrices

A =

a b

c d

 ; B =



b11 b12 · · · b1K

b21 b22 · · · b2K
...

...
. . .

...

bn1 bn2 · · · bnK


, where n = K ; C =

[
c11

]

• Symmetric matrix: A square matrix such that: ai,k = ak,i for all i and k.

Example 1.2 Symmetric matrices

A =

a 0

0 d

 ; B =


1 −5 3

−5 −2 9

3 9 2

 ; C =

[
c11

]

• Diagonal matrix: A square matrix such that: (1) at least one element of the main diagonal

is non-zero, and, (2) all element that is not part of the main diagonal is zero. Note that

diagonal matrices are also symmetric matrices.

Example 1.3 Diagonal Matrices

A =

a 0

0 d

 ; B =



b11 0 · · · 0

0 b22 · · · 0

...
...

. . .
...

0 0 · · · bnK


, where n = K ; C =

[
c11

]

Do not confuse diagonal matrix with diagonal of a matrix. The elements on positions where

(number of rows) = (number of columns) like a11, a22, a33 and so on, form diagonal of a

matrix. Diagonal exists for rectangular matrix also (and the way of finding diagonal elements

remains same).

• Scalar matrix: Is a diagonal matrix such that all the elements in the main diagonal are the

same.
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Example 1.4 Scalar Matrices

A =

2 0

0 2

 ; B =



b 0 · · · 0

0 b · · · 0

...
...

. . .
...

0 0 · · · b


; C =

[
c11

]

• Identity or Unity matrix: A scalar matrix such the elements in the main diagonal are

ones. An identity matrix is often denoted by the symbol I. Sometimes the dimension of the

matrix is also added as a subscript; In indicates an identity matrix of dimension n× n. It is

also common to refer to an In matrix as an identity matrix of size n.

Example 1.5 Identity Matrices

I2 =

1 0

0 1

 ; In =



1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1


; I1 =

[
1

]

• Zero matrix or Null matrix: A matrix whose elements are all zeros. A null matrix is

often denoted by 0. It is also common to use 0n to refer to a null matrix of size n.

Example 1.6 Zero or Null Matrices

02 =

0 0

0 0

 ; 0n =



0 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0


; 01 =

[
0

]

• Triangular matrix: Is a matrix that only has zeros either above or below the main diago-

nal. If the zeros are above the main diagonal is a lower triangular matrix, if the zeros are

below is an upper triangular matrix. Note that the zeros are above or below and not in

the main diagonal.

A triangular matrix is one that is either lower triangular or upper triangular. A diagonal

matrix is both upper and lower triangular.
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Example 1.7 Triangular matrices

Lower triangular matrices:

A =

1 0

2 3

 ; Ln,K =



l11 0 · · · 0

l21 l22 · · · 0

...
...

. . .
...

ln1 ln2 · · · lnK


Upper triangular matrices:

B =

1 2

0 3

 ; Un,K =



u11 u12 · · · u1K

0 u22 · · · u2K
...

...
. . .

...

0 0 · · · unK



• Conformable matrix: Is a matrix that has dimensions suitable for a given operation, e.g,

if matrices A and B have the same dimension then we say that they are conformable for

addition. Another example, if A is a square matrix then A is conformable for inversion.

More about this when discussing the different operations with matrices.

• Discussion/Motivation:

– How would data for cross section likely to differ from time series data when put in

matrix form?

∗ Cross Section (N ≥ K)

∗ Time Series (N ≤ K)

– In what type of matrix would the following error structures are likely to be represented?

∗ HOMOSKEDASTIC errors (Scalar Matrix).

∗ HETEROSKEDASTIC errors (Diagnol Matrix).

∗ AUTOCORRELATION matrix (Diagnoal Matrix implies no auto-correlation, Many

and ‘high’ numbers in off-diagonal elements imply strong auto-correlation)

– Does y = βX imply we can always solve for β∗ = X−1y? (NO ! However, will β∗ =

(X′X)−1X′y))
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(ABC)−1 = C−1(AB)−1 = C−1B−1A−1
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2 Basic operations in linear algebra

Definition 2.1 Matrix Equality

Matrices A and B are equal if and only if : (1) they have the same dimension, and, (2)

each element ai,k ∈ A is equal to the element bi,k ∈ B for all i, k. That is,

A = B ⇐⇒ ai,k = bi,k ∀(i ∈ n, k ∈ K)

Example 2.1 Matrix Equality

If

A =

 1 0 3

−1 2 4

 ; B =

 1 0 3

−1 2 4


then, A = B.

Also, if

A =

 1 0

−1 2

 ; X =

x11 x12

x21 x22

 , and X = A

then, {x11 = 1, x12 = 0, x21 = −1, x22 = 2}.

Definition 2.2 Matrix Addition

Matrix addition is the binary operation that results from adding the element ai,k ∈ A to

the element bi,k ∈ B to obtain a new matrix C such that the element ci,k = ai,k +bi,k. Only

matrices with the same dimension are conformable for addition. Matrix subtraction is

the homologous operation for subtraction.
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Example 2.2 Matrix Addition

If AnK =



α11 α12 · · · α1K

α21 α22 · · · α2K

...
...

. . .
...

αn1 αn2 · · · αnK


and BnK =



β11 β12 · · · β1K

β21 β22 · · · β2K
...

...
. . .

...

βn1 βn2 · · · βnK


, then:

AnK +BnK = CnK =



α11 + β11 α12 + β12 · · · α1K + β1K

α21 + β21 α22 + β22 · · · α2K + β2K
...

...
. . .

...

αn1 + βn1 αn2 + βn2 · · · αnK + βnK



Also if, A22 =

 1 −2

−1 3

 and B22 =

5 22

3 −1

, then:

A22 +B22 = C22 =

 1 + 5 = 6 −2 + 22 = 20

−1 + 3 = 2 3− 1 = 2

 =

6 20

2 2


Finally, note that A22+B23 is not defined. That’s because the matrices are not conformable

for addition.

Proposition 2.1 Adding the null matrix

The null matrix is the additive identity, i.e.,

A + 0 = A

. Let AnK =



α11 α12 · · · α1K

α21 α22 · · · α2K

...
...

. . .
...

αn1 αn2 · · · αnK


and On =



0 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0


, then:

AnK + 0n



α11 + 0 α12 + 0 · · · α1K + 0

α21 + 0 α22 + 0 · · · α2K + 0

...
...

. . .
...

αn1 + 0 αn2 + 0 · · · αnK + 0


=



α11 α12 · · · α1K

α21 α22 · · · α2K

...
...

. . .
...

αn1 αn2 · · · αnK


= AnK
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The addition of matrices is both commutative and associative,

A + B = B + A (Commutative Law)

(A + B) + C = A + (B + C) (Associative Law)

Proposition 2.2 Matrix Addition: Commutative Law

Let AnK =



α11 α12 · · · α1K

α21 α22 · · · α2K

...
...

. . .
...

αn1 αn2 · · · αnK


and BnK =



β11 β12 · · · β1K

β21 β22 · · · β2K
...

...
. . .

...

βn1 βn2 · · · βnK


, then:

AnK +BnK =



α11 + β11 α12 + β12 · · · α1K + β1K

α21 + β21 α22 + β22 · · · α2K + β2K
...

...
. . .

...

αn1 + βn1 αn2 + βn2 · · · αnK + βnK


= C1nK

and,

BnK +AnK =



β11 + α11 β12 + α12 · · · β1K + α1K

β21 + α21 β22 + α22 · · · β2K + α2K

...
...

. . .
...

βn1 + αn1 βn2 + αn2 · · · βnK + αnK


= C2nK

because every ikth element in C1nK is the same in C2nK the two matrices are the same,

therefore A + B = B + A
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Proposition 2.3 Matrix Addition: Associative Law

Let AnK =



α11 α12 · · · α1K

α21 α22 · · · α2K

...
...

. . .
...

αn1 αn2 · · · αnK


, BnK =



β11 β12 · · · β1K

β21 β22 · · · β2K
...

...
. . .

...

βn1 βn2 · · · βnK


, and

CnK =



γ11 γ12 · · · γ1K

γ21 γ22 · · · γ2K
...

...
. . .

...

γn1 γn2 · · · γnK


,

then: (AnK + BnK) + CnK =





α11 + β11 α12 + β12 · · · α1K + β1K

α21 + β21 α22 + β22 · · · α2K + β2K
...

...
. . .

...

αn1 + βn1 αn2 + βn2 · · · αnK + βnK




+



γ11 γ12 · · · γ1K

γ21 γ22 · · · γ2K
...

...
. . .

...

γn1 γn2 · · · γnK


=



α11 + β11 + γ11 α12 + β12 + γ12 · · · α1K + β1K + γ1K

α21 + β21 + γ21 α22 + β22 + γ22 · · · α2K + β2K + γ2K
...

...
. . .

...

αn1 + βn1 + γn1 αn2 + βn2 + γn2 · · · αnK + βnK + γnK


also: AnK + (BnK + CnK) =



α11 α12 · · · α1K

α21 α22 · · · α2K

...
...

. . .
...

αn1 αn2 · · · αnK


+





β11 + γ11 β12 + γ12 · · · β1K + γ1K

β21 + γ21 β22 + γ22 · · · β2K + γ2K
...

...
. . .

...

βn1 + γn1 βn2 + γn2 · · · βnK + γnK




=



α11 + β11 + γ11 α12 + β12 + γ12 · · · α1K + β1K + γ1K

α21 + β21 + γ21 α22 + β22 + γ22 · · · α2K + β2K + γ2K
...

...
. . .

...

αn1 + βn1 + γn1 αn2 + βn2 + γn2 · · · αnK + βnK + γnK


Because the two resulting matrices are equal it has to be true that (A+B)+C = A+(B+C)

13



Definition 2.3 Transposition

The transpose A′ of matrix A is a matrix whose kth row is the kth column of A.a

Formally,

B = A′ ⇐⇒ bi,k = ak,i ∀(i ∈ n, k ∈ K)

aSome authors will denote the transpose of A as AT instead of A′.

Example 2.3 Transposition

Let A22 =

1 2

3 4

, then A′ =

1 3

2 4



Let B23 =

6 5 4

3 2 1

, then B′ =


6 3

5 2

4 1



Let Cn =



c 0 · · · 0

0 c · · · 0

...
...

. . .
...

0 0 · · · c


, then C′ =



c 0 · · · 0

0 c · · · 0

...
...

. . .
...

0 0 · · · c



• By definition every row of A′ is a column of A, then if the dimension of A is n×K then the

dimension of A′ is K × n.

• Again, by definition of transpose (A′)′ = A.

• The transpose of a column vector a is a row vector b:

Example 2.4 Transpose of vectors

If b = a′ and an1 =



a11

a21
...

an1


, then b1n =

[
a11 a12 · · · a1n

]

• Using the definition of a symmetric matrix we know that,

A is symmetric ⇐⇒ A = A′

14



Because diagonal matrices are symmetric, the last statement will be true to all diagonal

matrices (including the scalar, identity and null matrices).

• The transpose of a lower (upper) triangular matrix is an upper (lower) triangular matrix.

• The transpose is distributive over the addition of vectors/matrices.

(A + B)′ = A′ + B′

(a + b)′ = a′ + b′

Definition 2.4 Inner product or dot product

The inner product, or dot product, is a binary operation that results from adding the

products of the ith elements of two vectors. For two vectors to be conformable for inner

product they need to have the same number of elements. Given two vectors a and b with

the same length (n) their inner product is:

a · b = a1b1 + a2b2 + . . .+ anbn =

n∑
i=1

aibi

Example 2.5 Dot product

Let a =

[
10 2 4

]
, and b =

[
−1 0 3

]

Then,

a · b = 10× (−1) + 2× (0) + 5× 3 = 5

Also, let c =

[
−2 2

]

Then neither a · c nor b · c is defined. Because the length of the two vectors do not

coincide. If that’s the case we say that the vectors are not conformable for dot product.

• The result of an inner product is an scalar.

• The dot product is just defined for vectors of the same size, not matrices.

• The inner product is a commutative operation

a · b = b · a

15



• Is distributive over vector addition:

a · (b + c) = a · b + a · c

• The associative property is meaningless for a dot product because the dot product of two

vectors is a scalar.

Definition 2.5 Norm

The Norm of a vector z, ‖z‖, is the (Euclidean) distance between the origin (0, 0) and z.

The norm is the square root of the inner product of z with itself:

d(x,y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2 =
√∑n

i=1(xi − yi)2

Then,

d(z, 0) =
√

(z1)2 + (z2)2 + · · ·+ (zn)2 =
√∑n

i=1 z
2
i =
√

z · z = ‖z‖

Example 2.6 Norm

Let z =

[
1 0 −1

]
, then ‖z‖ =

√
z · z =

√
1× 1 + 0× 0 + (−1)× (−1) =

√
2

• The norm is non-negative.

Definition 2.6 Orthogonality

Two vectors a and b are orthogonal if they are perpendicular. We denote orthogonality

using the ⊥ symbol. If a and b are orthogonal then a ⊥ b. The inner product of two

orthogonal vectors is zero.

16



Proposition 2.4 The inner product of orthogonal vectors is zero

Two inner product of orthogonal vectors is a · b = 0.

Recall the Law of Cosines: “If a triangle has sides A, B, and C and the angle θ is

opposite to the side C, then

c2 = a2 + b2 − 2ab cos(θ)

where the lowercase letters represent the length of the sides of the triangle.

Let a be the vector representation of A, b of B, and c of C. Then, it has to be

true that: c = a− b. Then,

‖a− b‖2 = (a− b) · (a− b) = a · a− a · b− b · a + b · b = ‖a‖2 + ‖b‖2 − 2a · b

Therefore, because c2 = ‖c‖2 it has to be the case that:

−2ab cos(θ) = −2a · b

a · b = ab cos(θ)

Knowing that cos(θ) = 0 implies an angle of θ = 90◦ between A and B (perpendicular

sides), it is clear that if a ⊥ b ⇐⇒ a · b = 0

17



Definition 2.7 Scalar multiplication

A scalar multiplication of a matrix (or vector) A by a scalar c is a matrix (or vector) cA

of the same dimension of A whose elements are the product of the scalar and the elements

of the original matrix (or vector). That is,

If c is a scalar and AnK =



a11 a12 · · · a1K

a21 a22 · · · a2K
...

...
. . .

...

an1 an2 · · · anK


then,

cAnK =



c× a11 c× a12 · · · c× a1K

c× a21 c× a22 · · · c× a2K
...

...
. . .

...

c× an1 c× an2 · · · c× anK



Example 2.7 Scalar multiplication

Let Ank =

10 2 −1

2 4 1

, then: If c = 2, cAnK =

20 4 −2

4 8 2



• If c = 0 then multiplying c to a square matrix A will result in a null matrix 0 with the

dimensions of A.

• If c = 1 then multiplying c to a matrix A will result in the same matrix A.

• The scalar multiplication is commutative:

cA = Ac

• Is distributive over vector/matrix addition, let A and B be two matrices of the same

size and a and b two row (column) vectors of the same length:

c(A + B) = cA + cB

c(a + b) = ca + cb

18



Definition 2.8 Matrix multiplication

A matrix multiplication of matrices An×K and BK×m is a matrix Cn×m such that the

ikth element of C is the inner product of the ith row vector of A and the kth column

vector of B. Thus, ci,k = ai · bk. Two matrices A and B are conformable for matrix

multiplication AB if the number of columns in A (premultiplication matrix) is equal

to the number of rows in B (postmultiplication matrix). This is because every element

of the product of A and B is an inner product, and in order to compute the inner product

of two vectors they need to be of the same length. Therefore,

An×K =



a1,1 a1,2 · · · a1,K

a2,1 a2,2 · · · a2,K
...

...
. . .

...

an,1 an,2 · · · an,K


=



a1

a2
...

an



And, BK×m =



b1,1 b1,2 · · · b1,m

b2,1 b2,2 · · · b2,m
...

...
. . .

...

bK,1 bK,2 · · · bK,m


=

[
b1 b2 · · · bm

]

AB
(n×m)

=



a1

a2
...

an


[
b1 b2 · · · bm

]
=



a1 · b1 a1 · b2 · · · a1 · bm

a2 · b1 a2 · b2 · · · a2 · bm
...

...
. . .

...

an · b1 an · b2 · · · an · bm



Example 2.8 Matrix Multiplication

Let A23 =

1 0 −1

0 1 2

, and B32 =


10 2

1 2

0 −1

, then,

AB22 =

1 0 −1

0 1 2




10 2

1 2

0 −1

 =

1× 10 + 0× 1 + (−1)× 0 1× 2 + 0× 2 + (−1)× (−1)

0× 10 + 1× 1 + 2× 0 0× 2 + 1× 2 + 2× (−1)



AB22 =

10 3

1 0


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• The matrix multiplication is not commutative:

AB = C 6=⇒ BA = C

• Vectors and matrices can be multiplied as long as they satisfy the conformability condition.

• The matrix multiplication is distributive over vector/matrix addition:

A(b + c) = Ab + Ac

A(B + C) = AB + AC

• The matrix multiplication is associative:

A(BC) = (AB)C

• The matrix multiplication is distributive over scalar multiplication:

c(AB) = (cA)B

= A(cB)

= (AB)c

= AcB

• The identity matrix is the multiplicative identity. That is, multiplying a matrix A by the

identity I results in the matrix A, provided that A and I are conformable.

• Multiplying by the null matrix results in the null matrix (provided that the matrices are

conformable).

• The transpose of a product (AB)′ is B′A′.

• The transpose of an extended product is (ABC)′ is C′B′A′.

• A linear combination is an expression constructed from a set of terms by multiplying each

term by a constant and adding the result. Thus, the rows of C = Ab, where An×K is a matrix

and bK×1 a vector, are the linear combinations of the columns of A where the coefficients

of the linear combination are the elements of b. Moreover, when computing C = AB, where
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An×K is a matrix and BK×m is also a matrix, the columns of C are a linear combination of

the columns of A where the coefficients are the columns of B.

• Let an×1 and bk×1. In order to multiply a and b we need to verify that the vectors are

conformable. Therefore, we need to transpose b to obtain cn×K = ab′. Also, you can easily

verify that ab′ = ba′. If n = K then the multiplications b′a = a′b are well defined and are

equal to the inner (dot) product a · b.
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3 Linear systems of equations

3.1 Representation in matrix form, determinants, adjoints and inverses

A system of n linear equations with K variables can be represented in matrix form as follows:

Ax = b

Where A is the matrix of coefficients of the system, x is a vector of variables and b is a vector of

constants. Note that A and x need to be conformable for matrix multiplication, i.e. the number of

columns in A has to be equal to the number of rows of x. Finally, the dimension of b should be the

number of rows in A and the number of columns in x (recall this result from matrix multiplication).

Example 3.1 Representation of a linear system in matrix form

Consider the following system of linear equations:

x1 −2x2 +3x3 = 2

−x1 +
1

2
x3 = 0

4x2 −x3 = 6

We can write the system in matrix form as follows:


1 −2 3

−1 0
1

2

0 4 −1



x1

x2

x3

 =


2

0

6


Note that by defining,

A =


1 −2 3

−1 0
1

2

0 4 −1

 , x =


x1

x2

x3

 , b =


2

0

6


we can write the system as,

Ax = b

• For Ax = b, if b = 0 we say that the system of equations is homogeneous. If b is nonzero

then the system of equations is nonhomogeneous

• A homogeneous system always has the trivial solution x = 0.
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Definition 3.1 Inverse of a Matrix

For a square matrix A, the inverse, denoted by A−1, is a matrix such that if A is premul-

tiplied or postmultiplied by A−1 the result is the identity matrix. That is,

AA−1 = A−1A = I

• The inverse is only defined for square matrices.

• A matrix A is nonsingular if and only if its inverse exist. A matrix without an inverse is a

singular matrix.

• If A is symmetric then its inverse is also symmetric.

• For square matrices A and B, (AB)−1 = B−1A−1, provided that both inverses exist.

• For square matrices A, B and C, (ABC)−1 = C−1(AB)−1 = C−1B−1A−1 provided that

all the inverses exist.

Definition 3.2 Minor and Cofactor of a Matrix

Let A be a n× n matrix. Then,

• The (i, j) minor, denoted Mi,j , is the (n − 1) × (n − 1) matrix obtained from A by

deleting the ithrow and the jth column.

• The (i, j) cofactor, denoted Ci,j , is defined in terms of the minor by

Ci,j = (−1)i+jMi,j
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Definition 3.3 Determinant

Let A be an n× n matrix with entries aij .

The determinant of a matrix Ann, |A| (or det A), is defined as:

For n = 1,

|A| = a1,1

In general, for n ≥ 2,

For any row i = 1, 2, ..., n,

|A| = ai,1Ci,1 + ai,2Ci,2 + ...+ ai,nCi,n =

n∑
j=1

ai,jCi,j

where Ci,j is the cofactor i, j of the matrix A.

This method is called the cofactor expansion along the i th row.

Recall, a cofactor Ci,j is the determinant of a submatrix of A obtained by eliminat-

ing row i and column j, or minor Mi,j , times (−1)i+j .

Thus, determinant of A in terms of co-factor expansion along 1st row

|A| = a1,1C1,1 + a1,2C1,2 + ...+ a1,nC1,n =

n∑
j=1

a1,jC1,j

can be re-written in terms of minors as follows -

|A| = a1,1M1,1 − a1,2M1,2 + ...(−11+n)a1,nM1,n =

n∑
j=1

(−1)1+ja1,jM1,j

Alternatively, determinant of A can be found by cofactor expansion along the j th column

for any j = 1, 2, ..., n,

|A| = a1,jC1,j + a2,jC2,j + ...+ an,jCn,j =

n∑
i=1

ai,jCi,j
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Example 3.2 Determinants

Let A =

2 4

0 1


To find the determinant of A we need to:

• Find the cofactors (in this case C11 and C12, because n = 2).

– To find C11 we need to compute the determinant of the submatrix obtained by

eliminating row 1 and column 1. Therefore, C11 = |1| = 1.

– To find C11 we need to compute the determinant of the submatrix obtained by

eliminating row 1 and column 2. Therefore, C12 = |0| = 0.

• Multiply each cofactor by it’s corresponding entry from the original matrix and taking

into account (−1)i+1.

|A| = 2× 1− 4× 0 = 2

The determinant is a function det : squarematrices −→ R satisfying the following properties:

1) Doing a row replacement on A does not change |A|

2) Scaling a row of A by a scalar c multiplies the determinant by c

3) Swapping two rows of a matrix multiplies the determinant by −1.

4) The determinant of the identity matrix In is equal to 1.

• For a matrix A of dimension K ×K and scalar c. |cA| = cK|A|

• |AB| = |A||B|

• |A| = |A′|

Definition 3.4 Adjoint matrix

The adjoint of matrix A is a matrix created by multiplying the j, i cofactors of A.

adj A = Cj,i
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Example 3.3 Adjoint matrix

Let A =

2 3

1 4


The cofactors are: M11 = 4 M21 = 3, M12 = 1, and M22 = 2.

Then,

adj A =

(−1)1+1M11 (−1)2+1M21

(−1)1+2M12 (−1)2+2M22

 =

 4 −3

−1 2



• The inverse of a square matrix A is given by A−1 =
1

det A
adj A. Therefore, if det A = 0

the inverse of A does not exist and A is singular.

Example 3.4 Finding the inverse using the adjoint matrix and determinant

Let A =

2 3

1 4

,

In the previous example we found that:

adj A =

 4 −3

−1 2


The determinant of A is:

det A = 2× 4− 1× 3 = 5

Therefore,

A−1 =
1

det A
adj A =

1

5

 4 −3

−1 2

 =

 0.8 −0.6

−0.2 0.4


Note that AA−1 = I.

AA−1 =

2 3

1 4


 0.8 −0.6

−0.2 0.4

 =

2× 0.8− 3× 0.2 2× (−0.6) + 3× 0.4

1× 0.8− 4× 0.2 1× (−0.6) + 4× 0.4

 =

1 0

0 1


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Definition 3.5 Solution of a Nonhomogeneous Linear System of Equations

Given the nonhomogenous system of linear equations,

Ax = b

If A is nonsingular then,

x∗ = A−1b

Is a solution to the given system.

The previous result can be easily verified by premultiplying the original system of equations by

the inverse of the coefficient matrix.

Ax = b

A−1Ax = A−1b

Ix = A−1b

x∗ = A−1b

To guarantee that A−1 exist we need to assume that A is nonsingular.
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Example 3.5 Solution of a linear system

Consider the system from Example (3.1). The inverse of A is,

A−1 =


1/6 −5/6 1/12

1/12 1/12 7/24

1/3 1/3 1/6


Note that,

A−1A =


1/6 −5/6 1/12

1/12 1/12 7/24

1/3 1/3 1/6




1 −2 3

−1 0
1

2

0 4 −1

 =


1 0 0

0 1 0

0 0 1

 = I

and,

x∗ = A−1b =


1/6 −5/6 1/12

1/12 1/12 7/24

1/3 1/3 1/6




2

0

6

 =


20

1

−16


You can verify that x∗ is the actual solution of the system by multiplying Ax∗ and checking

that is equal to b.

3.2 Linear independence and solutions to linear systems

Definition 3.6 Linear transformation (Linear Map)

A linear trasnformation (linear map, linear function) is a function from the vectors

space into the vectors space that preserves the operations of addition and scalar

multiplication. Therefore, for a linear transformation L, vectors a and b, and scalar α it

has to be true that:

L(a + b) = L(a) + L(b) (additivity)

L(αa) = αL(a) (scalar multiplication)

Matrix multiplications are linear transformations.a

aThe second property (scalar) is also known as homogeneity of degree 1.
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Example 3.6 Matrices and linear transformation

Let A23 =

 0 1 −1

−1 3 3

; and x31 =


1

2

3

. Note that the premultiplication by A is a

linear transformation from R3 to R2 (it takes a vector with n = 3 and returns one with

n = 2). Ax =

 0 1 −1

−1 3 3




1

2

3

 =

[
−1 14

]

Definition 3.7 Linear combination

A linear combination of vectors a and b is a vector c that is obtained by sum of the

product of each original vector by a scalar.

c = αa + βb

In general the linear combination y of vectors {x1,x2, ...xK} by scalars {λ1, λ2, ...λK} is:

y =

K∑
i=1

λixi

Definition 3.8 Linear Dependence

A set of k ≥ 2 vectors is linearly dependent if at least one of the vectors in the set is a

linear combination of the others.

Example 3.7 Linearly dependent vectors

Consider vectors a, b and c,

a =

 1

2

 , b =

 3

4

 , c =

 4

6


then, because

a + b = c

we say that a,b and c are linearly dependent. Any matrix made out of this three vectors

will be linearly dependent, the order of the vectors in the matrix does not matter. Recall

that a matrix is just a set of vectors.
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Definition 3.9 Linear Independence

A set of vectors A is linearly independent, if and only if, given a a row of coefficients α,

the only solution to:

αA = 0

α1a1 + α2a2 + ...+ αKaK = 0

is,

α1 = α2 = ... = αK = 0

Systems of linear equations may have:

1. A unique solution

2. No solution

3. Infinite solutions

A solution to a linear system Ax = b is a point x∗ such that the K equations are simultaneously

satisfied; from a geometric point of view, for the case of K = 2, this represents the intersection

of two lines, for K = 3 the intersection of three planes, for K > 3 the intersection of K hyperplanes.

Consider the case of K = 2; if we have two equations and two variables, we know that:

• If the slope of the two equations are different then there is only one point in which the

two lines intersects.

• If the slopes are the same we may have no intersection (parallel lines) or infinite inter-

section (the two equations describe the same line).

For example,

a1,1x+ a1,2y = b1

a2,1x+ a2,2y = b2

which can be rewritten as,

y =
b1
a1,2
− a1,1
a1,2

x

y =
b2
a2,1
− a2,1
a2,2

x
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If,

a1,1
a1,2

=
a2,1
a2,2

→ a1,1a2,2 − a1,2a2,1 = 0

Then the system may have no or infinite solutions. Therefore, if a1,1a2,2 − a1,2a2,1 6= 0 we can

guarantee that the system has a solution. That is, by comparing the slopes of two linear

equations we can determine if the system has a unique solution or not.

Recall that the analogous concept to the slope of a curve is the gradient (see lecture notes on

static optimization for a definition of a gradient). The same logic that we use for K = 2 can

be applied to K > 2 to discuss the existence of an unique solution to the system, if at least the

gradients of two of the K hyperplanes are identical then the system do not have an unique solution.

This is the basis of the idea of determinants.

• For K = 2, note that |A| 6= 0 ↔ a1,1
a1,2

6= a2,1
a2,2

. That is, if the determinant of a matrix is

non-zero we know that a system has an unique solution. You can also verify that this is true

for K > 2.

• A matrix with a linearly dependent column or row (vector) will have a determinant equal

to zero; this imply that the matrix is singular, the inverse and, therefore, the solution is not

determined.
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Example 3.8 The determinant of a 2× 2 linearly dependent matrix

Consider vectors x =

[
0.5 0.2

]
and y = 2x =

[
1 0.4

]

Now consider the matrix:

A =

x

y

 =

0.5 0.2

1 0.4


The determinant is given by:

det A = 0.5× 0.4− 1× 0.2 = 0

In general for n = 2, Let x =

[
x1 x2

]
and y = λx =

[
λx1 λx2

]
. Where λ is a scalar.

A =

x

y

 =

 x1 x2

λx1 λx2


The determinant is:

det A = λx1x2 − λx1x2 = 0

You can prove that this is true also for n > 2. It will take a while to do it, but it’s possible.

4 Eigenvalues, diagonalization, rank and trace

Definition 4.1 Eigenvalues

The eigenvalues of the square matrix A are defined as the set of λ that satisfy:

(A− λI)c = 0

Where c is a column vector.

• The eigenvalues of a matrix can be negative/zero/positive and real/complex.

• The system (A − λI)c = 0 has a solution only if the determinant |A − λI| = 0. This

determinant is known as the characteristic equation of A.

• A K ×K matrix has K eigenvalues.
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• An eigenvector is a vector c that results from solving (A−λI)c = 0. A square matrix A with

K columns has at least K eigenvectors. The eigenvectors are also known as characteristic

vectors.

• If c is a null vector we say that it is a trivial solution, because it will satisfy (A− λI)c = 0

for any set of λ.

Example 4.1 Finding eigenvalues

Consider the matrix,

A =

 5 1

4 2


then,

A− λI =

 5− λ 1

4 2− λ


Computing the determinant we get the following characteristic equation,

|A− λI| = (5− λ)(2− λ)− (4)(1) = λ2 − 7λ+ 6

By making the determinant equal to zero, the roots of the resulting second-degree

polynomial are λ1 = 6 and λ2 = 1. This are the eigenvalues of A. Using each eigenvalue

we can obtain the correspondent eigenvector of A.

for λ1 = 6

(A− 6I)c =

 −1 1

4 −4


 c1

c2

 =
−c1 + c2 = 0

4c1 − 4c2 = 0

Therefore, the set of vectors such that c1 = c2 are the set of eigenvectors for λ1 = 6.

for λ2 = 1

(A− 1I)c =

 4 1

4 1


 c1

c2

 =
4c1 + c2 = 0

4c1 + c2 = 0

The the set of solutions to the previous system is given by (c1,−4c1). This is the set of

eigenvectors for λ2 = 1.
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Proposition 4.1 Different eigenvalues corresponds to different eigenvectors

Proof by contradiction.

Consider the matrix A, the set of eigenvalues {λ1, λ2, ...λn} and the corresponding set of

vectors {c1, c2, ...cn}. Assume that:

λi 6= λj ∀ i, j ∈ N

and,

∃ ci = cj for some i, j ∈ N

Then,

If ci = cj it follows that Aci = Acj . Using the definition of eigenvalues (A− λiI)ci = 0→

Aci = λici. Which implies that:

Aci = Acj

λici = λjcj

λici = λjci (ci = cj)

(λi − λj)ci = 0

which contradicts the initial assumption that λi 6= λj . �
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Proposition 4.2 Different eigenvectors are orthogonal (for symmetric matrices)

Direct proof Recall that if two vectors are different then they have different eigenvalues, so

we can safely assume that if eigenvectors ci 6= cj the corresponding eigenvalues have to be

λi 6= λj . Then by definition

(A− λiI)ci = 0

(A− λjI)cj = 0

Multiplying both expressions by c′j and c′i respectively.

c′j(A− λiI)ci = 0

c′i(A− λjI)cj = 0

Substracting the two equations yields,

c′j(A− λiI)ci − c′i(A− λjI)cj = 0

c′i(A− λiI−A + λjI)cj = 0 (By symmetry)

(λj − λi)c′icj = 0

Because we start assuming λj 6= λi it has to be the case that c′icj = 0. Recall that

c′icj = ci · cj = 0→ ci ⊥ cj . �

Definition 4.2 Diagonalization of a Matrix

The diagonalization of matrix A is obtained by,

C−1AC = C−1CΛ = Λ

where C is a K × K matrix such the i column vector ci ∈ C is the eigenvector that

corresponds to the eigenvalue i of A. And Λ is a diagonal matrix with K and the main

diagonal is equal to the vector of eigenvalues.

• The first step to prove that C−1AC = C−1CΛ, is to realize that AC = CΛ and premultiply

by C−1. Note that AC = CΛ is just the representation of the system Aci = λici which is

what we are doing when finding the eigenvectors. Therefore, AC = CΛ has to be true.
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• Then, because C−1C = I, C′CΛ = Λ.

• Representing A as CΛC−1 is called spectral decomposition.

• Becauase C−1AC = Λ implies |C−1AC| = |Λ| and |C−1AC| = |C−1||A||C| = |C−1||C||A| = |C−1C||A| =

|I||A| = 1|A| = |A|. Then it has to be the case that |A| = |Λ|. That is, the determinant of

a matrix is equal to the determinant of its diagonalization. Also, the determinant of a

matrix is equal to the product of its eigenvalues.

• If a matrix has any eigenvalue equal to zero the determinant of the matrix is equal

to zero. And, consequently, the matrix is singular and not invertible.

• If all eigenvalues are positive the determinant of the matrix is positive.

• If the number of negative eigenvalues is even the determinant is positive, if the is

number of negative eigenvalues is odd then the determinant is negative.

Definition 4.3 Trace of a matrix

The trace of a matrix A is the sum of its diagonal elements,

tr(A) =

K∑
i=1

ai,i

• For a matrix A and scalar c, tr(cA) = ctr(A).

• tr(A) = tr(A′)

• tr(A + B) = tr(A) + tr(B)

• tr(IK) = K

• tr(AB) = tr(BA)

• tr(A′A) =
∑K

i=1 ai,iai,i =
∑K

i=1 a
2
i,i

• tr(C−1AC) = tr(C−1CΛ) = tr(Λ), and; because tr(C−1AC) = tr(C−1CA) = tr(AC−1C) =

tr(A), we know that tr(A) = tr(Λ). That is, the trace of a square matrix is equal to the

trace of its diagonalization. From this it follows that the trace of a matrix is equal to

the sum of its eigenvalues.

Definition 4.4 Column and Row Rank

The column rank of A is the largest number of linearly independent columns of A.The

row rank of A is the largest number of linearly independent rows of A.
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Theorem 4.1 Equality of Column and Row Rank

The column rank and column row of a matrix are equal.

• A matrix A is full column (row) rank if the number of columns (rows) is equal to the

column (row) rank.

• Because the column rank and row rank are equal we won’t make a distinction among them

from now on and simply use the term rank of a matrix.

• rank(An×K) = rank(A′K×n) ≤ min(n,K).

• rank(AB) ≤ min(rank(A), rank(B)).

• rank(A) = rank(A′A) = rank(AA′).

• For a K ×K full rank matrix C, rank(C−1AC) = rank(A). And because rank(C′AC) =

rank(Λ) it has to be the case that rank(A) = rank(Λ). Therefore, if any eigenvalue of

matrix A is zero the matrix won’t have full rank (some columns are linearly dependent). On

the other hand, if all eigenvalues are different than zero the matrix has full rank. If a matrix

is full rank its determinant is not zero.

5 Quadratic forms and definite matrices

Definition 5.1 Quadratic form

The quadratic form q is defined as:

q = x′Ax

where x is a K × 1 nonzero vector and A is a K ×K symmetric matrix. Note that we can

also represent q as a sum.

q =

K∑
i=1

K∑
j=1

xixjAi,j

• If q = x′Ax > (<)0 for all nonzero x, then A is positive (negative) definite.

• If q = x′Ax ≥ (≤)0 for all nonzero x, then A is positive (negative) semidefinite.
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• For the K ×K symmetric matrix A the spectral decomposition is CΛC−1. Therefore,

x′Ax = x′CΛC−1x

= y′Λy

=

K∑
i=1

λiy
2
i

Theorem 5.1 Definiteness and Eigenvalues

Let A be a K × K symmetric matrix. If all eigenvalues are positive (negative) then the

matrix A is positive (negative) definite. If some roots are zero, and the rest are all

positive (negative) then the matrix A is positive (negative) semidefinite. If A has both

positive and negative eigenvalues then A is indefinite.

• If A positive (semi)definite, then |A|(≥) > 0.

• If Λ is positive definite, then A is also positive definite.

• The identity matrix I is positive definite.

6 Calculus and liner algebra

The following results of calculus and linear algebra are useful to remember (specially for econo-

metrics).

• For y = Ax. Because,
∂yi
∂x

=
∂a′ix

∂x
= a′i. Therefore,

∂y

∂x
=
∂Ax

∂x
= A′.

• For y = x′Ax,
∂y

∂x
=
∂x′Ax

∂x
= (A + A′)x.

• For the quadratic form y = x′Ax,
∂y

∂x
=
∂x′Ax

∂x
= 2Ax.

• For the quadratic form y = x′Ax,
∂y

∂A
=
∂x′Ax

∂A
= xx′.
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